La “Nobel” de Estadstica es argentina y esto es lo que tiene para decir, cara a cara

Hasta hace un puado de semanas, Andrea Rotnitzky -doctora en estadstica y egresada de la UBA- era “apenas” profesora plenaria del Departamento de Economa de la Universidad Di Tella, profesora adjunta de la Universidad de Harvard en los Estados Unidos, e investigadora principal del Conicet. Su bio inclua decenas de papers e investigaciones originales, publicadas en revistas cientficas de alto prestigio e impacto internacional. 

Pero ahora, como si aquellos pergaminos no fueran ms que suficientes, acaba de recibir el prestigiossimo “Rousseeuw Prize for Statistics“, que otorga la Fundacin del Rey Balduino de Blgica. Este premio, si bien no est relacionado con la academia sueca, en el mundillo acadmico recibe el apodo del “Nobel de la Estadstica” debido al mrito que acarrea. Y, como su inspirador, adems del prestigio tambin divide casi US$ 1 milln entre los ganadores.

Infotechnology entrevist a Rotnitzky en su estudio unos das antes de que partiera a Bruselas para recibir esta distincin que comparte con otros cuatro colegas. Los cinco son considerados, en las ltimas dcadas, figuras centrales de una nueva rama de esta especialidad, la inferencia causal.

La blockchain que quiere salvar a Argentina: se realiz la primera edicin del City Tech en el pas

El nuevo tanque coreano que cambia la forma de sacar fotos con celulares: cmo funciona

Qu hace un estadstico en su vida laboral?

En la buena’ estadstica es clave que el cientfico explique su modelo, o sea las suposiciones de donde parte para hacer su anlisis.

El espectro es enorme. Es como en medicina donde hay diferentes subespecialidades. Yo soy estadstica-matemtica y me dedico a tratar de disear las mejores estrategias para recoger datos, para que sean informativos y los mtodos ms apropia-dos para analizarlos, de manera que nos permitan hacer inter-pretaciones confiables. As, a nosotros pueden consultarnos por un problema en particular o tambin podemos tratar de entender las estructuras de problemas generales y avanzar en desarrollos tericos que luego pueden utilizarse para encontrar soluciones puntuales. Pero, en general, la estadstica usa la matemtica como herramienta para algn fin concreto.

La estadstica es una disciplina ya madura?

Si y no. Es cierto que tiene muchos siglos, pero est en continua evolucin y revolucin. En las ltimas tres dcadas surgieron en paralelo dos subdisciplinas que provocaron verdaderas revolu-ciones en estadstica: la ciencia de datos y la inferencia causal. La ciencia de datos estudia algoritmos para hacer clasificaciones y predicciones en base a grandes bases de datos, mientras que la inferencia causal nos ayuda a razonar con datos para tomar las mejores decisiones sobre intervenciones, tratamientos mdicos, polticas pblicas, exposiciones a agentes potencialmente txicos. Por ejemplo, en medicina la inferencia causal nos ayuda a razonar correctamente cuando queremos analizar datos “observacionales” que obtenemos de los registros mdicos, para decidir cuales son las mejores estrategias personalizadas para tratar a un paciente con alguna enfermedad crnica, a lo largo del tiempo. Idealmente una quisiera estudiar las distintas estrategias en un ensayo clnico, pero esto es imposible en la prctica. Por eso es fundamental aprender a analizar correctamente datos observacionales. Esto es clave, por ejemplo, para saber si dar cierta medicacin ayuda, o no, a los pacientes que sufren una enfermedad compleja, que puede evolucionar a lo largo del tiempo y del propio tratamiento.

Es posible popularizar la estadstica en las escuelas?

“S, yo creo que sera muy bueno que se enseen ms de estas ideas y conceptos, incluso ya desde la escuela inicial”, responde la especialista ante la pregunta que da ttulo a este apartado. “Obviamente con el nivel apropiado para cada grado. De hecho, recuerdo que hace ya mu-chos aos, mi hijo estudiaba en los Estados Unidos, y en los primeros grados de su escuela primaria los maestros ya les daban’ ciertos ejercicios para hacer estimaciones e ir desarrollando apreciacin estadstica. Y en la secun-daria podra hacerse tambin sumando ya alguna forma-lidad matemtica. En la Universidad si es algo comn y en todas las instituciones serias ya se ofrecen cursos de causalidad. Pero es esencial, ya que es la estadstica la que realmente nos ensea a aprender partiendo de datos y evidencia emprica. O sea, es el mismo centro del mto-do cientfico. Y es esencial en cualquier rubro y actividad tecnolgica o de negocios.”

En qu consiste la innovacin estadstica que reconoci el premio que recibi?

Hay tres cientficos: Robins, Rubin y Pearl que -desde fines de los aos 70 y principio de los 80- impulsaron una verdadera revolucin en la estadstica, cada uno desde un campo distinto de la ciencia. De hecho, uno de estos investigadores, Robins, es mdico y ni siquiera se form como estadstico en la universidad. Yo me sum a desarrollar esas ideas al poco tiempo de recibirme, cuando eran todava bastante incipientes. Podra decirse que estos “padres fundadores” desarrollaron una nueva metodologa que le dio rigor y formalismo a nociones sobre causa-efecto que eran, hasta ese momento, muy superficiales. As fue naciendo este campo que hoy se conoce como “inferencia causal” y que tiene aplicaciones en muchos campos, y en particular, es central en la investigacin mdica y de salud pblica.

png;base64,iVBORw0KGgoAAAANSUhEUgAAArwAAAGDAQMAAADzsFHlAAAAA1BMVEUAAACnej3aAAAAAXRSTlMAQObYZgAAADhJREFUeJztwTEBAAAAwqD1T20MH6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4G4aLAAGDL4HEAAAAAElFTkSuQmCC

Andrea Rotnitzky en una de sus clases.

Cul era la falla terica que haba antes?

Si bien todo el mundo sabe que una correlacin entre dos varia-bles no implica que una cause a la otra , lo cierto es que haba que definir bien lo contrario, cundo s podemos decir con alguna certeza y formalidad que una situacin provoca una consecuencia concreta? Robins desarroll grandes ideas en este campo y los dems premiados fuimos siguiendo sus pasos y completando conceptos, casi como “actores de reparto”. Su gran aporte fue descifrar un problema importantsimo, hasta entonces irresuelto, para poder estimar los efectos de tratamientos cambiantes en el tiempo: como incorporar en el anlisis estadstico variables que son simultneamente intermedias en el camino causal entre los tratamientos que las preceden y la respuesta, y a la vez son con-fusoras, o sea causas comunes, de los tratamientos posteriores y la respuesta. Por ejemplo, los pacientes que no responden bien a un cierto tratamiento inicial son los que tienen ms tendencia a ser cambiados de tratamiento por sus mdicos, entonces la respuesta al tratamiento inicial es a la vez, una variable en el camino causal entre este tratamiento y la respuesta final al cabo de un cierto tiempo, y a la vez es una variable confusora entre el siguiente tratamiento al que es asignado y la respuesta final. Para sacar conclusiones mdicas vlidas, es fundamental incorporar estas variables en el anlisis correctamente.

Trabajo remoto en dlares: las cinco mejores plataformas para conseguir empleo sin salir de casa

Bitcoin sin rumbo: sigue estancado en u$s 16.000 y no va a mejorar antes del 2023

Y eso qu consecuencias trajo?

Muchas, porque estas ideas ya se adoptaron en la investigacin mdica y hoy se usan estos anlisis para determinar si una estrategia de tratamiento para una enfermedad compleja (un cncer, por ejemplo) sirve o no. Incluso tambin pueden usarse para comparar mejor si una estrategia de vacunas o de medicamentos antivirales en el Covid, resultan ms efectivos que otros ya que ahora podemos analizar los estudios epidemiolgicos de forma ms razonada y adecuada que aos atrs.

El anlisis estadstico puede caer en las famosas “grietas”? 

No s si en grietas pero s s que partiendo un mismo “set” de datos se puede llegar a conclusiones completamente diferentes, segn el modelo de anlisis que proponga cada investigador. De alguna manera podra decirse que la estadstica no es necesaria-mente matemtica y muchas veces los resultados dependen del contexto del que se parte. En la “buena” estadstica es clave que el cientfico explique su modelo, o sea las suposiciones de donde parte para hacer su anlisis. Y determinar si dichas suposiciones tienen un correlato con la realidad. En definitiva, la estadstica hace interpretaciones y eso implica una cierta subjetividad, sentido comn, honestidad intelectual, etctera. Si algo de eso falta, los resultados seguramente cambien.

Se aplica la estadstica en otros campos?

Se aplica en todas partes, no hay desempleo en nuestra profesin! De hecho, todas las grandes empresas en el mundo desarrollado, especialmente las tecnolgicas, tienen equipos de estadsticos trabajando para tomar las mejores decisiones en forma cotidiana. Pero no es algo que slo sirve en multinacionales: cualquier com-paa mediana que quiera hacer opciones de negocios fundadas debera recurrir al aporte estadstico para minimizar sesgos y elegir bien. Y tambin el Estado debe sumarlo: la verdad es que cualquier organizacin necesita apoyarse en la evidencia para evitar errores y maximizar las estrategias que mejoren sus beneficios. 

We would like to say thanks to the writer of this article for this remarkable material

La “Nobel” de Estadstica es argentina y esto es lo que tiene para decir, cara a cara